

Company Overview

General Information
What is MGB doing?
Difference \& Identity
About the CEO
Co-Founders
SAB

molGenBio

01 . General Information

囲 Company name MolGenBio
i CEO Yoon, Yeo Joon
Established on March 29, 2021
F. Business areas R\&D of pharmaceuticals and API
0 Address Room 101, Building 141, Seoul National University

02. What is MGB doing?

Genetically encoded small molecules

Higher probability of success compared to
synthetic materials
Utilizing microbiomes

High-efficiency
Development

of Pharmaceuticals
Based on Genetically
Encoded

High-efficiency
Development
of Pharmaceuticals
Based on Genetically
Encoded
Small Molecules \& Synthetic Biology molGenBio

High-efficiency discovery of new active compounds
high-efficiency discovery of new active
compounds based on pharmacophores
Efficient mass production

High-efficiency structure-activity modification

High-efficiency structural modification
High-efficiency optimization and activity modification
Creation of new activity and value

03. Difference \& Identity

04. About the CEO

College of Pharmacy, Seoul National University

A world-leading researcher in biosynthesis and synthetic biology of genetically encoded small molecules First Elucidation of the biosynthetic pathways of FK506, kanamycin, and gentamicin

Awards

- 1988 to 2000 - BS•MS•PhD at Dept. Chem. Technol. at Seoul Nat Univ.
- 1996 to 1998 - Visiting research fellow, University of Wisconsin
- 2000 to 2002 - Postdoctoral fellow, University of Minnesota
- 2002 to 2004 - Assistant professor, Department of Biochemical Engineering, University of Ulsan
- 2004 to 2020 - Professor, Department of Chemistry and Nanoscience Ewha Womans University
- 2020 to present _ Professor, Department of Manufacturing Pharmacy, Seoul National University
- 2014 to present - Fellow of the Royal Society of Chemistry (FRSC)

Career

- Selected as the "Ministry of Education, Science and Technology's Representative Excellent Performance" (2009)
- Selected as "Basic Research Excellent Performance" and "Government R\&D Excellent Performance" (2012)
- Awarded as "Best Scientist of the Month" (2012)
- Selected as "Y-KAST Frontier Scientist" (2014)
- Selected as "National R\&D Excellent Performance" (2016)
- Selected as "Top 100 Core Future Technologies and Leaders in South Korea" (2017)
- Awarded with the "Ministry of Science, ICT and Future Planning Commendation" (2017)

Achievements

- >150 studies published in major journals
- H-index: 39
- Cited more than 5,500 times
- 44/29 domestic patent applications/registrations
- 27/12 international patent applications/registrations
- Six cases of technology transfer (over KRW 350 million)

Publications

- Three studies published in Nature Chemical Biology
- Angewandte Chemie Int. Ed.
- Four studies published in Natural Product Reports
- PNAS
- J Am Chem Soc (First identification of FK506 biosynthesis, quoted more than 150 times)

Editorial Board

- Nat Prod Rep
- Appl Microbiol Biotechnol
- Biomolecules
- J Microbiol Biotechno
- BioMed Res Int

05. Co-founders

Yoon, Yeo Joon

Seoul National University College of Pharmacy
Lead/candidate biosynthesis and optimization Development of mass-produced strains

Oh, Dong-Chan
Seoul National University College of Pharmacy

Research on discovery of new natural products for over 20 years "Leading researcher in natural product chemistry" Discovering new natural products

- Ph.D., University of California, San Diego
- Director of Natural Products Research Institute, Seoul National University
- About 160 studies published
- Achievements: Science , Nat. Chem. Biol, Angew. Chem. Int. Ed. Etc

Cheong, Eunji
Yonsei University Department of Biotechnology

Research on physiological activity and signa of brain nerve cells for over 20 years

"Leading researcher in neuroscience"

Efficacy, safety, and mechanism evaluation

- Ph.D., University of Pittsburgh
- About 70 studies published
- Achievements: Neuron, Nat Commun, ACS Nano, PNAS, J. Neurosci. Etc.

Chapter 1. Company Overview

06. Scientific Advisory Board

Lee, Phil Hyu

Yonsei University Severance Hospital Department of Neurology

Research on neurological diseases for over 20 years
"Renowned for neurological diseases such as Parkinson's disease"
Parkinson's disease specialist

- Doctor of Medicine, Yonsei University (Neuroscience)
- Professor of Neurology at Severance Hospital
- Parkinson's disease • dementia • dyskinesias • EBS Best Doctors
- 2017 Pfizer Medical Research Award
- Achievements: Neurology, Brain, J. Neurochem., etc

Jo, Eun-Kyeong
Chungnam National University College of Medicine Microbiology Lab

Research on control of tuberculosis and infectious inflammation for 25 years

"Leading researcher in the field of

 tuberculosis immunity"Tuberculosis Immunization Specialist

- Doctor of Medicine, Chungnam National University
- Director of Infection Control Convergence Medical Research Center (MRC), Chungnam National University
- About 200 studies published
- Achievements: Nat Immunol, Immunity, Cell Host \& Microbe, Autophagy, etc.

Shin, Sang Joon
Yonsei University Severance Hospital Department of Oncology

Development of big data analysis and decision support system for cancer treatment
"Innovative drug development for cancer treatment"

Cancer treatment specialist

- Doctor of Medicine, Yonsei University (Oncology)
- Professor, Department of Oncology, Cancer Hospital, Severance Hospital
- Director, Medical Information Security Center, Yonsei Medical Center
- Development of new drugs targeting melanoma, big data analysis, and CDSS development
- Achievements: Nature, etc

Platform Technology

Importance of Genetically Encoded Small Molecules
Unique New Drug Development Process of MGB
MtG: Drug Development Platform
MtG Expandability
Pipeline Summary

01. Importance of Genetically Encoded Small Molecules (1)

. $\quad \begin{aligned} & \text { Genetically encoded small molecules: } \\ & \text {-. the richest resources for drug development }\end{aligned}$
. Probability of new drug development with genetically encoded small molecules: 0.68\%

Classification	Total number of substances	Number of medicines	Probability
Synthetic	$\sim 9,000,000$	$\sim 2,250$	0.025%
Natural	$\sim 500,000$	$\sim 1,400$	0.28%
Animal-derived	$\sim 100,000$	~ 125	0.13%
Plant-derived	$\sim 350,000$	~ 800	0.23%
Microorganism -derived	$\sim 70,000$	~ 475	0.68%

Mostly derived from streptomycetes/actinomycetes

Genentech, Lodo Therapeutics Ink Up-to\$969M Metagenomics Drug Discovery Partnership
"Genentech signed a broad, open-ended drug discovery collaboration with Lodo
Therapeutics that could be worth nearly \$1 billion, focused on deriving unique, natural products from the microbial DNA found in soil"

01 . Importance of Genetically Encoded Small Molecules (2)

Anticancer

Anti-infective

Erythromycin

Immunosuppressant

Anti-cholesterol

Simvastatin

Atorvastatin

02. Unique New Drug Development Process of MGB

Safety equivalent to that of existing drugs: chance of failure X

03. MGB drug development platform, Molecule through Gene

Molecule through Gene

Efficient lead discovery based on genome scanning Probability of discovery of new compounds Probability of discovery of effective activities		Synthetic biological massive production Ease of mass production Selective production of target substances

04. MtG Scalability

Expansion of pipeline diversity through platform expansion

05. Pipeline Summary

IndicationDevelopment candidate	Exploration/ optimization	Mass production (CMO)	Non-clinical trial	
Anti-CNS (PD)	MG-TA			2023
Anti-CNS (AD)	MG-TA			
Anti-CNS (AD)	MG-RZ			2023
Anti-hair loss	MG-TA			2024
Anticancer	MG-LZ			2024
Antituberculosis	MG-AR			2024

Pipeline

01 . Technology Introduction (1)

- FK506: Immunosuppressants used to prevent the rejection of organ transplant

Elimination of immunosuppressive activity of FK506 \Rightarrow Safe nerve regeneration + PD/AD inhibition

FK506 + FKBP12 + Calcineurin \rightarrow NF-ATc dephosphorylation X \rightarrow IL2 expression \downarrow Immunity ∇
α-synuclein/amyloid- β aggregation ∇

FK506 + FKBP51/52 $\rightarrow \rightarrow$ Neuroregeneration \triangle
Hair growth $\mathbf{\Delta}$ (?)

01 . Technology Introduction (2)

FK506

- Biosynthesis by Streptomyces polyketide synthase (PKS) / nonribosomal synthetase (NRPS) hybrid system
\rightarrow Domain composition of each module determining the chemical structure

Complex chemical structure

- Difficulty in chemical structure modification

Synthetic biology-based

- Substitution, insertion, and removal (lego-
ization) of domain/module
\rightarrow Precise and free modification of FK506 chemical structure

Over 50 new derivatives biosynthesized ∇
Establishment of immunosuppressionneuroregeneration SAR

J. Nat. Prod. 2013. 76, 1091

02. Summary of MG303/MG402

02. Results (1) MG303/MG402 Hair Growth-promoting Activity

Increased hair follicle length and anagen induction/elongation

Anagen elongation

Animal model: Increased number of anagen hair follicles

Alopecia areata ex vivo model: Increase hair length

MG303

Increased hair follicle length in
induced alopecia areata by induced alopecia areata by
poly $(1: C)$, interferon χ-treatment

02. Results (2) Safety of MG303/MG402

. ${ }^{\circ}$

Safety proven to be equivalent to or higher than that of the existing FK506

Immunosuppressive activity:
Reduced by more than 100,000 times

Cytotoxicity: No effect at a dose below $1 \mu \mathrm{M}$ Genotoxicity (AMES test): No reverse mutation induced Cardiovascular safety (hERG assay): No potential risk Zebrafish fry safety assessment: No effect at a dose below $100 \mu \mathrm{M}$

Mouse liver and kidney tissue assessment: No effect at a dose below 100 mpk (single-dose toxicity test)

Safety pharmacology test (rodents, single oral administration):
No effect at a dose below 20 mpk

Data are expressed as Mean \pm S.D. G1: Vehicle control group (DMSO)
G2: Test article group ($5 \mathrm{mg} / \mathrm{kg}$)
G3: Test article group ($10 \mathrm{mg} / \mathrm{kg}$)
G4: Test article group ($20 \mathrm{mg} / \mathrm{kg}$)

Respiratory system safety pharmacology assay (respiratory rate per minute)

Chapter 3. Pipeline | MG-TA

03. Development Plan

Development plan by year

Indication	2022	2023	2024	2025	2026	2027
Hair growth	Mass production	Optimization/ additional efficacy test	Non-clinical trial	Phase 1 clinical trial	Phase 2 clinical trial	

Thank You

